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Abstract— Strong couplings between the mechanical, electric,
magnetic, fluidic and thermal fields exist in the behaviour laws
describing micro-systems. Also, due to the large surface/volume
ratio, surface forces such as the electrostatic force and fluid
damping become predominant. This paper presents the modelling
and simulation of electrically-actuated microsystems taking the
electro-mecano-fluidic coupling into account. A micro-resonator
consisting in a cantilever beam suspended over a substrate
is modelled, and finite element simulations are validated with
experimental measurements.

I. INTRODUCTION

From gas and pressure sensors to micro-pumps and micro-
mirrors, micro-electro-mechanical systems (MEMS) are used
in a large variety of sensors and actuators for automotive,
biomedical, environment and space applications. Current simu-
lation technology only addresses the modelling and simulation
of MEMS partially, often without satisfactorily solving the
strongly coupled, multiscale and multiphysical problems at
hand. The aim of this paper is to present the modelling
and simulation of electrically-actuated microsystems using the
finite element method, focusing in particular on the strong cou-
pling between the electrostatic actuation and the mechanical
response, as well as on the modelling of fluid damping. This
multiphysic modelling strategy is applied to the simulation of
a micro-resonator consisting of a cantilever beam suspended
over a substrate. The obtained numerical results are validated
against experimental measurements.

II. MULTI-PHYSICAL MODELLING OF MEMS
We use the finite element method (FEM) to model the

electro-mechanical interactions and to perform a static and a
dynamic analysis taking into account large mesh displacements
and fluid damping. The usual method to model the coupling
between electric and mechanical fields is to use two different
numerical codes and iterate between them, which is time
consuming and less accurate when the coupling becomes
stronger. Here we propose to compute the electric and the
mechanical field and their interaction together in the same
formulation.

A. Electro-Mechanical Coupling

A consistent way of deriving a finite element discretisa-
tion for the coupled electro-mechanical problem consists in
applying the variational principle on the total energy of the
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coupled problem, which includes the electric and mechanical
energies. The expression of the energy density results from
thermodynamic considerations. If the unknown variables are
the displacement and the electric potential, Gibb’s free energy
density G has to be used:

G =
1

2
STT − 1

2
DTE, (1)

where T is the stress tensor, S the strain tensor, D the electric
displacement tensor and E the electric field, the internal forces
may be obtained using the virtual work principle as presented
in [1]. Note that the minus sign between the energies comes
from the thermodynamic hypotheses. (The electric energy used
in this case is actually the co-energy.)

The total energy of the coupled problem on a volume Ω is:

Wint =
1

2

∫
Ω

STT dΩ− 1

2

∫
Ω(u)

DTE dΩ = Wm−We, (2)

where Wm is the mechanical energy and We the electric
energy. The variation of the total energy with respect to the
displacement u and to the electric potential φ yields the
mechanical internal forces fm and the electric equilibrium
equation qe, respectively:{

fm · δu = δuWint = δuWm − δuWe,
qe δφ = δφWint = δφWm − δφWe.

(3)

These equations provide the equilibrium equations with the
unknowns u and φ. In (3), δuWm and δφWe can be treated as
in the standard variational calculus for uncoupled electrostatics
and mechanics. Further, the mechanical energy is independent
from the voltage: δφWm = 0. The variation of the electric
energy due to the displacement u is the contribution of the
electrostatic forces. After some developments [1], we obtain

δuWe = 1
2

∫
Ω

DTFgradδu dΩ, (4)

where F is a matrix function of the space derivatives of φ.
This term represents the electrostatic forces on the structure.
From (3) and (4), a fully coupled finite element formulation
can be built following classical discretisation procedures.

The variation of the mechanical and electrostatic forces with
respect to small potential and displacement perturbation is an
important characteristic of the coupled system since it allows
a better convergence of static nonlinear solvers and a better
evaluation of the linear vibrations around equilibrium posi-
tions. The tangent stiffness matrix around a position (u0, φ0)
may be obtained by linearisation of the internal forces. The
finite element form is(

Kuu(φ) Kuφ(φ)
Kφu(φ) Kφφ

)(
∆U
∆Φ

)
=

(
∆fm
∆Q

)
(5)
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Fig. 1. Finite element mesh superimposed with a microscope photograph of
the micro-resonator (viewed from above).

Fig. 2. Detail of the micro-beam anchor.

where U and Φ are the discretised displacement and potential
field u and φ. The total coupled matrix is symmetric. The
matrix Kφφ is the same as the stiffness matrices of the purely
electric problem and need not be further discussed. The other
terms are derived from the total energy as presented in [1].
These terms depend on the electric field and the coupled
problem is thus nonlinear.

B. Squeeze Film Damping
To model the effect of the air squeezed under the beam, the

nonlinear Reynolds equation will be used:

∂

∂xi

(
ph3

µ

∂p

∂xi

)
= 12

∂(ph)

∂t
, (6)

where p is the total pressure, h is the distance between the two
plates, and µ the air viscosity. This relation is valid only if the
flow is laminar and fully developed, if the pressure is constant
along the z-direction and the fluid does not not slip at the wall
[3]–[5]. In MEMS, as the air layer can become thinner than
the mean free path of the air molecules, the viscosity must
be further adapted, taking the Knudsen number into account.
This will be further developed in the full paper.

III. SIMULATION AND EXPERIMENTAL MEASUREMENTS

We study a micro-resonator consisting of a cantilever beam
suspended over a substrate (the lower electrode). The technol-
ogy used for fabrication is the PolyMUMPS process proposed
by company MEMSCAP. The beam is made of polysilicon and
measures 175 × 2 × 30µm. The air gap is about 2µm. Fig. 1
shows a top view of the resonator together with the finite
element mesh. Fig. 2 shows in more details the geometrical
model of the beam anchor.

Fig. 3 compares the static response with experimental data.
The strongly coupled electro-mecano-fluidic problem is solved
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Fig. 3. Applied voltage [V] vs. displacement of the tip of the beam [m] for
different values of the length L of the anchor connection (see Fig. 2). The
stars denote experimental values.
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Fig. 4. Dynamic response of the micro-resonator: speed of the tip of the
beam [m/s] vs. frequency [Hz]. The jagged curve denotes the experimental
values.

using the Riks-Crisfield continuation algorithm [1] to obtain
the equilibrium position for for each voltage. The shape of the
anchor clearly has a big influence on the equilibrium position.

The dynamic response is presented in Fig. 4. Despite the
rather simple fluid damping model, the resonance frequencies
measured experimentally using a vibrometer analyser POLY-
TEC MSA400 [2] match the numerical simulations quite well.
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